Three-dimensional topology of turbulent premixed flame interaction
نویسندگان
چکیده
منابع مشابه
Non-premixed Flame-Turbulence Interaction in Compressible Turbulent Flow
Nonpremixed turbulent reacting flows are intrinsically difficult to model due to the strong coupling between turbulent motions and reaction. The large amount of heat released by a typical hydrocarbon flame leads to significant modifications of the thermodynamic variables and the molecular transport coefficients and thus alters the fluid dynamics [1],[4]. Additionally, in nonpremixed combustion,...
متن کاملThree-dimensional PDF simulation of a piloted turbulent non-premixed jet flame
Turbulent combustion is an important process in many technical applications, e.g. industrial gas furnaces used for heating water, production of steam and combustion in jet and diesel engines. To control the turbulent combustion, simulation tools with predictive power are required. The basic equations for turbulent combustion are well known, but their application to the complex flows appearing i...
متن کاملNumerical Simulation of a Premixed Turbulent V-Flame
Turbulent premixed combustion is a major active research topic in combustion science. A number of computational studies have focused on idealized configurations to aid in interpreting flame dynamics observed in the laboratory, including one-dimensional strained flames, two-dimensional vortex/flame interactions and limited three-dimensional direct numerical simulations. In this paper, we present...
متن کاملSimulations of edge-flame propagation in turbulent non-premixed jets
Ignition, flame propagation and stabilisation have been simulated and analysed in a turbulent jet of non-premixed methane and air. The first order Conditional Moment Closure (CMC) turbulent combustion model was fully coupled with a Reynolds-Averaged Navier Stokes (RANS) flow simulation. A CMC model was developed to account for spark ignition. The over-prediction of turbulent flame propagation w...
متن کاملNumerical Control of 3D Turbulent Premixed Flame Simulations
One of the well-known properties of turbulent, premixed flames is that their speed of propagtion is correlated to the intensity of the turbulence they encounter. A simple consequence is that these types of flames are inherently unstable. Given a source of turbulence, if the flame is propagating faster than the mean flow, it will drift upstream and encounter increased turbulent intensities that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Combustion Institute
سال: 2015
ISSN: 1540-7489
DOI: 10.1016/j.proci.2014.08.003